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Fifty Challenging Problems in Probability 

Solutions and Illustrations Using the Program Monaco 

This document describes how the program Monaco1 can be used to address the 56 problems 
in the book Fifty Challenging Problems in Probability with Solutions (Addison Wesley 1965, 
Dover 1987) by Frederick Mosteller, available at 
https://mbapreponline.files.wordpress.com/2013/07/fifty_challenging_
problems_in__2.pdf.  

Most of this document assumes significant familiarity with Monaco. Without that, this 
document can only be used as an indication as to some of the sorts of problems Monaco can 
solve – see the later section that summarises which problems Monaco can and cannot 
address. However, the problems in this book are in many ways atypical of the problems 
Monaco is most suited for, such as problems involving die rolls and drawing cards from decks. 

The purpose of this document is to investigate the applicability of Monaco to these programs. 
In some problems Monaco is an ideal tool for the task, in others it is less so, and in some it 
cannot be used at all. The best that can be done – or at least the best this author can do – is 
presented, whether a full solution, a partial solution, an illustration of the problem, or simply 
no solution. In many cases – even cases in which Monaco is entirely satisfactory – there may 
be or are better approaches than using Monaco, but these have not been considered. 

References in this document to “the given solution” or “the given solutions” refer to the 
solutions to the problems that make up most of the book. However, the solutions in this 
document were created independently from those solutions. 

Monaco’s single biggest limitation, commented on when relevant, is that it addresses single 
problems, it cannot produce general solutions where one or more parameters in the problem 
are retained in the solution – although sometimes, especially for problems with only one such 
parameter, its solutions can suggest hypotheses as to what such a general solution might be. 
Most problems are handled in a way that makes changing the problem parameters easy, even 
when this is not demonstrated. In addition, most of these problems require the use of 
approximate mode, either because they involve continuous distributions or because they 
have large parameters. Default random numbers are used in these cases. 

In order to save space, actual Monaco output – most often from the option -statistics, 
but also from output functions in an expression – is not reproduced here, but is instead 
extracted from. The use of the option -statistics as the source of quoted results is not 
commented on in the solutions here. Similarly, the option -probability, often required 
to produce probability output in an appropriate form, is not mentioned when used. However, 
both are included in the summary section described below. 

Although it is a minority of cases, unless noted otherwise, Monaco’s exact mode, specified by 
the option -exact, is used to produce these results. (The alternative, approximate mode, 
requires no option.) In some cases exact answers are produced without a main expression by 
using the option -eval; in this case the option -exact is not required. 

 
1 See http://www.mnemosyne.uk/monaco/. The results in this document were re-created using version 

2.49 of the program, but were first created well before that. 
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To distinguish exact results from approximate results, as well as pointing the latter out, when 
expressed in decimal form only the latter are qualified using “about”. These are quoted to the 
precision displayed rather than the usually recommended approach of quoting to the 
precision indicated by the confidence interval. Exact results are accurate to the precision 
quoted when presented in decimal form, or are actually exact when presented as a rational 
number. The precision of an exact value presented as a decimal value could be increased by 
using the option -precision, but that has not been done here. 

A summary section at the end of this document shows the parameters of the runs used – as 
reported by the option +parameters, which does not report itself – except for runs that 
just change parameter values; these can be created by simple modification of the given 
parameters, as is noted in each relevant case. 

Discussions of the 56 problems are: 

1. The easiest way to handle this problem in Monaco is using a brute force search. We 
can consider all numbers r0 of red socks from 1 to c0 and all numbers r1 of black 
socks from 1 to c1. We can do this in exact mode using r01:=die(c01) – note that in 
exact mode we loop over all values. We then pick two socks numbered r2 and r3, 
counting from 0 to r01-1, such that r2<r3. 

This can be implemented as rloop2(r01-1,rloop3(r01-r2-1,r3+=r2+1;term)), 
where term checks whether r2 and r3 are both red socks, which as r2<r3 is simply 
the test r3<c0, and counts how often this occurs as r9, thus term is r3<c0&incr9. 

Defining r8:=r01*(r01-1)/2, the probability of two red socks is now r9 divided by 
r8, and so the probability of two red socks is a half if 2*r9==r8, and in this case we 
can output r0, r1 and r01, the numbers of red and black socks and the total number 
of socks. Setting c0 and c1 to 100, we find the only three solutions in that range are 
3, 1, 4; 15, 6, 21 and 85, 35, 120. The first of these answers part (a) of the problem, 4 
socks. The second of these has an even number of socks and thus answers part (b) of 
the problem, 21 socks. The third of these is mentioned in the given solutions. 

Note that although brute force is not elegant, and the given solution uses some 
algebra, it also has to use some brute force, and thus this problem can be considered 
a satisfactory use of the program. 

2. We cannot use the program to solve this problem for all possible probabilities, only 
specific values. However, the wording of the question implies, but does not prove, 
that the solution depends only on the relative probabilities, not their absolute values. 
We thus will let the probability of winning the first and third matches be the rational 
number c0 / c1, and the probability of winning the second match be the rational 
number c2 / c3. 

We can demonstrate the solution using the alternative cases -c0123 {1,3,2,3} 
and -c0123 {2,3,1,3}. An instance of winning a match with probability the 
rational number p0 / p1 is implemented by the function f0[p0>random(p1)]. For two 
games in a row to be won the second match must be won and either of the other two 
matches must be won, which is the result of f0(c2,c3)&(f0(c0,c1)|f0(c0,c1)). 

In the first case, with the easier match in the middle, the probability of winning is 
10/27; in the second case, with the harder match in the middle, the probability of 
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winning is 8/27. We should thus, in at least this example, play the champion twice 
and the father once. We can try other values, for example the one in the given 
solution with either -c0123 {2,5,4,5} and -c0123 {4,5,2,5}, and get the 
same probabilities 0.384 and 0.512 as in the given solution. 

3. Similarly to the previous problem, we can only illustrate this for example values of p, 
which we let be the rational number c0 / c1. Using the same function f0 as the 
previous problem, the three man jury returns the correct result with probability 
2@f0(c0,c1)+f0(1,2)>=2. For example, using -c01 {2,3} the correct result has a 
probability of 2/3, and similarly for other examples, the result is the same as the single 
juror. This is the given solution, that both are always equal. 

4. The straightforward way to address this problem, to implement it, does not work in 
exact mode owing to the indefinite number of die rolls. We can however use 
approximate mode as until(incr0,d6==6) and for ten million attempts, with 
default random numbers, the mean is about 6.00096, which we can guess means an 
exact result of 6. 

We can get an exact result by using an absorbing Markov chain, which has the very 
simple transition matrix -u0 {{5,1},{0,6}} and we can count the transitions 
until reaching the absorbing state of having rolled a 6 from the matrix 
v0:=mmat_absorb_visits(u0) and can output the normalised result using 
write_ratio(ends(v0)). We can put these together as a -eval option. The output 
is 6, as expected and matching the given solution. 

5. Making the solution to the problem – which without the program does not live up to 
the description as challenging – as obvious as possible, we are using real numbers and 
so must use approximate mode. We let the coin centre be (x0,x1) and without loss of 
generality let this lie in the square with both coordinates from zero to one, thus 
x0:=xuniform;x1:=xuniform. Then with coin diameter b0, either coordinate, as n0, 
is suitable if the function f0 is true, where f0 is defined as n0-b0/2>0&n0+b0/2<1. 
The overall probability is f0(x0)&f0(x1). This is, with -b0 0.75 and with ten million 
results, about 0.0624273. We can see what this figure probably is by adding the 
option -fraction 100, and that is then about 1/16, which is the given solution. 

6. It does not matter which number is bet on, so here we assume that is 6. The problem 
is then simply solved using get(count_eq(3d6,6),{-1,1,2,3}) and the result is 
-17/216, i.e. a loss of 17/216, as the given solution. 

7. The number of turns that Mr. Brown wins if he plays for c0 turns on a wheel with c1 
numbers, on one of which he wins and on the rest of which he loses, is given by 
r0:=sum(selection_list[c0]from[unit[c1]]). If a win is rewarded by c2, plus 
his stake returned, then his winnings are given by r0*(c2+1)-c0. For the game as 
described, c0, c1 and c2 are 36, 38 and 35. This problem is too large to be solved 
exactly using 64 bit integers, but can be solved with 192 or more bit integers. Mr. 
Brown’s net gain against the casino is -1.89474, i.e. he makes a loss. Interpreting the 
bet with his friend is not clear from the question, as it does not make the case of 
breaking even clear, but the given solution indicates that the bet is to lose all turns. If 
that bet is for the sum c3, in the problem as given equal to 20, that adds further 
winnings of r0?c3:-c3, with a combined mean gain of 2.79042. These results agree, 
to the precision quoted, with the given solution. 
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8. This can simply use the expression same(combine13from[copy13(sequence4)]) 
and the probability is 1 in 158753389900 or 6.29908×10-12, as the given solution. 

9. This problem is best handled as an absorbing Markov chain, with states start, points 
of 4, 5, 6, 8, 9, 10, lose, win. The transition matrix is: 

1
36

⎝

⎜
⎜
⎜
⎜
⎜
⎛

0 3 4 5 5 4 3 4 8
0 27 0 0 0 0 0 6 3
0 0 26 0 0 0 0 6 4
0 0 0 25 0 0 0 6 5
0 0 0 0 25 0 0 6 5
0 0 0 0 0 26 0 6 4
0 0 0 0 0 0 27 6 3
0 0 0 0 0 0 0 36 0
0 0 0 0 0 0 0 0 36⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

This can be set as the list u0, see the summary in the final section. The winning 
probability can be found by letting v0:=mmat_absorb_states(u0) and the winning 
probability is then last(dmat_row(,v0)) divided by first(dmat_rsum(v0)). The 
winning probability is 244/495, or 0.492929, as the given solution. 

10. This problem is not suitable for the use of Monaco. 

11. This problem is not suitable for the use of Monaco. 

12. This problem is not suitable for the use of Monaco. 

13. This problem is not suitable for the use of Monaco. 

14. The direct approach here, using until(r0:=dz[s0];e0:=1;incr1,all(v0)), where 
s0 is the number of coupons, i.e. 5, only works in approximate mode, where the result 
is about 11.4156. We can set this up as a Markov chain similarly to problem 9; for the 
matrix see the final summary section. The result is 137/12 or 11.4167, which agrees 
with the given solution. 

15. We can create a suitable row as v0:=permute[c01]from[step[c01](c0)], where 
c0 and c1 are the numbers of the two kinds of people, here 8 and 7. The total number 
of pairs in that row can be determined as count(frest(v0)^lrest(v0)). The mean 
result is 112/15 or 7.46667, which is the given solution. 

16. Setting up this problem using the program is harder than noticing the obvious 
solution. However, since the work can be reused in the following problem, this has 
been done here. 

Let the number of rounds be set by -c0 3, and then a list of the players, of whom 
only two matter, can be set as -u0 head[pow(2,c0)]{1,2}, the number of 
players now being k0. We let r0 be the current number of players, initially r0:=k0. 
We then run the first c0-1 rounds of the tournament – we do not run the final – using 
do[c0-1](r0/=2;term). term now runs the round and moves the winners to the 
front of the list v0 by being rloop1(r0,r2:=2*r1;r3:=r2+1;e01:=max{e02,e03}). 
Finally, we want to know if the two relevant players meet in the final, which would be 
e02&e03 if r2 and r3 were 0 and 1 at this point. As they are not, we first set 
r23:={0,1}. 
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That event, that the two players meet in the final has probability 4/7, as the given 
solution. 

17. We start with the approach in the previous problem, extended to include the final. So 
everything before the outer loop is unchanged, and that loop is now do[c0]. We 
would like to make term rloop1(r0,r2:=2*r1;r3:=r2+1;e01:=dz2?e02:e03) as 
now jousts have a random result, but there are two problems. First, we cannot use 
dz2 inside a variable loop in exact mode. So we replace it by pool_dz(2) as we know 
the number of jousts is k0-1 and can initialise the pool using -pool k0-1 2. Second, 
we have discarded the information we want, so we can add r9|=(e02&e03) before 
changing e01. Our final result is r9. There is much unnecessary work here – we not 
need to randomly choose between knights numbered 0 and could stop once our 
result is known. But this is easier, and fast enough. 

The result is a probability of 1/4, as the given solution. 

18. This is a simple calculation that does not need the program, although the program 
could be used as the calculator of the required binomial coefficient. It is also simple 
to use the expression sum(sorted100dz2)==50, although this hides that binomial 
coefficients are used in its implementation. More than 256 bit integers are required. 
The resulting probability is 0.0795892, which agrees with the given solution. 

19. These are all cases of requiring at least c0 sixes when 6*c0 dice are thrown. For 
convenience we renumber the dice {0,0,0,0,0,1} and count the true results, i.e. 
count(select[6*c0]from{0,0,0,0,0,1})>=c0. For c0 = 1, 3, 3 the probabilities 
are 0.665102, 0.618667, 0.597346, which match the given solution. 

20. We here perform some analysis before using the program, but the (relatively) hard 
part of the problem uses the program, and thus we consider this as using the program 
to solve the problem. 

A’s initial options are to shoot at B, shoot at C, or fire to miss – the latter is not 
specified as an allowed option, but is a known approach in such problems. Shooting 
at C is pointless because a hit gives the duel to B. So the choice is between shooting 
at B and firing to miss. We consider each in turn, it is convenient to start with the case 
of firing to miss. 

If A fires to miss, B will eliminate C. That leaves the situation where it is A’s shot and 
there is only B left. A has one shot at B, then loses. A’s probability of success is 0.3, 
B’s is 0.7, C’s is zero. There is no point in using the program here. 

If A fires at B and misses, probability 0.7, then this is as the previous case. If A fires at 
B and hits, this is a new scenario, A and C left standing, C’s shot. Assume that A’s 
probability of success in this case is p, then A’s overall probability of success is 
0.7×0.3+0.3p = 0.3×(0.7+p). It remains to calculate p, and for that we can use the 
program. We use this approach if p > 0.3. 
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We can consider this as a Markov chain with four states: C to shoot, A to shoot, C 
wins, A wins. The transition matrix is: 

0

0.0 0.5 0.5 0.0
0.7 0.0 0.0 0.3
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

2 =
1
100

0 5 5 0
7 0 0 3
0 0 10 0
0 0 0 10

2 

We use the same expression as problem 9, with the new matrix, to get a probability 
p = 3/13 = 0.230769. As p < 0.3, the solution to the problem is that A should first fire 
to miss, then on all subsequent shots fire at his remaining opponent. This agrees with 
the given solution. 

21. We start by considering drawing with replacement. We let the numbers of balls in the 
two urns, as -c0123 {2,1,101,100}, urn A before urn B, red before black. We 
copy this to variables at the start of the expression as r0123:=c0123, but we also 
need the constants as described below. We select an urn by r9:=dz2, 0 being urn A, 
1 being urn B. We could draw a ball, 0 red, 1 black, by distribute([r9]?r23:r01) 
but this cannot be used in exact mode, and so we instead use the randomness pool 
by pool_dist([r9]?r23:r01) and make this the function f0, without arguments. 
Now we draw two balls by r4:=f0;r5:=f0. We need to initialise the pool, which can 
be by -pool 1 c01*c23, used twice. We could combine them, but this is easier 
when we consider the sampling without replacement case following. We could also, 
use a least common multiple to reduce the pool size, but there is no need to do this. 

Now we need to collect useful statistics for this case. The simplest way to do so is to 
use the numbers 0 to 7 to record the values of r9, r4 and r5 as 4*r4+2*r5+r9. How 
we use this is considered below. 

Now we consider the case without replacement. Between setting r4 and r5 we use 
f1 to update the urn, that being by r9?r4?decr3:decr2:r4?decr1:decr0, we do 
not use its result. If we otherwise continue as above, we need to change the second 
setting of the pool size to -pool 1 (c01-1)*(c23-1). 

Now we need to analyse the list results, and this requires processing after main 
expression evaluation has completed, a task for the option -output, using an 
output string %[expression], where we now consider what expression should be. It 
is convenient to set r0 to r7 – whose previous values we now do not need – to the 
numbers of occurrences of the results 0 to 7. First setting -s9 8, one way to do this 
is using results_loop9(e9:=results(r9));r01234567:=v9. 

We now can consider, for each case, what the probability of getting our guess right 
is. If, for example, we see RR, this can occur in r0+r1, or r01, ways. We would guess 
the more likely of these, i.e. a number of occurrences of r0?>r1. If we see RB this is 
r2?>r3. If we have just seen a first draw of red, then the probability of being correct 
is (r0?>r1)+(r2?>r3) divided by r0123, which we can report as a real number using 
rwrite_ratio. We then, in each of the cases, i.e. two runs, can similarly produce four 
probabilities, the probabilities of being right when first drawing red or black. With 
replacement these probabilities are 0.593966 and 0.598802; without replacement 
these probabilities are 0.570213 and 0.697605. This tells us that we are better 
replacing when we draw red first, but not replacing when we draw black first. 
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However, this has not told us which urn we should guess. We can extend expression 
by adding this – this will provide four cases in each run, but we will only use two from 
each. For example, having drawn RR our choice – 0 for urn A, 1 for urn B – is r1>r2.  
All four results can be conveniently output as a list using lwrite(r1357>r0246). Our 
results for RR, RB, BR, BB with replacement are {0,1,1,1}, without replacement are 
{0,0,0,1}. Making the better choices as to whether to replace, this becomes {0,1,0,1}. 

The conclusions on drawing RR, RB, BR or BB are thus urns A, B, A or B, respectively. 
This says we consider the first ball as to whether to replace, replacing red only, and 
then the second ball as to which urn to guess: red to guess urn A, black to guess urn 
B. This agrees with the given solution. 

22. We cannot use the program to solve for general a and b, only for selected values, 
which we let be c0 and c1. We can construct the, not yet randomised, list of all votes 
as -1 and 1 for the two candidates using -u0 step[c01](c0)?1:-1 and then can 
create a random list of the votes as permute[k0]from[u0]. If we let that be list, then 
our required event is any_eq(sigma(list)). 

Two example cases – which both require 128 bit integers – are that a = 15, b = 10 has 
probability 4/5, and that a = 20, b = 10 has probability 2/3. These – and that the 
probability is 1 when a = b, although this case has been excluded by the stated 
problem, but is considered in the given solution –  are consistent with the hypothesis 
that the probability is 1-(a-b)/(a+b) = 2b/(a+b) = 2/(1+r) where r = a/b, which is the 
given solution. 

23. We cannot use the program to solve for general N, only for selected values, which we 
let be c0. For the required event no tie, we can use xuntil[c0](r0+=ds2,r0==0,1). 
For N = 2 and N = 3 the probability is 1/2; for N = 4 and N = 5 the probability is 3/8; 
for N = 6 and N = 7 the probability is 5/16; for N = 8 and N = 9 the probability is 35/128; 
for N = 10 and N = 11 the probability is 63/256; for N = 12 and N = 13 the probability 
is 231/1024. These are 1/2, 3/8, 10/32, 35/128, 126/512, 462/2048 and the sequence 
1, 3, 10, 35, 126, 462 can be recognised (through inspection of Pascal’s triangle, or as 
https://oeis.org/A001700) as being the binomial coefficient 2m-1Cm, where 
m = N/2 (truncated) and the probabilities are 2m-1Cm/22m-1. This is equivalent to the 
given solution 2mCm/22m, as that solution notes. 

24. This problem is not suitable for the use of Monaco. 

25. This problem has a well-known ambiguity in the meaning of the phrase random chord. 
Here we choose what is probably the most natural definition, joining two random 
points of the circle’s circumference. As all points are equivalent, we choose one to be 
(1, 0), assuming a unit circle with centre at the origin. The other point is at 
(cos 𝜃, sin 𝜃) where 𝜃 is x0:=2*pi*xuniform. The required test for the chord length 
is then real_gt(sqrt(sum_sq(1-cos(x0),sin(x0))),1). This can only be done in 
approximate mode; over ten million results the probability is about 0.66654, from 
which we guess that it is 2/3. This is the given solution (c). 

26. This problem is solved using the expression: 

x0:=60*xuniform;x1:=60*xuniform;real_lt(abs(x0-x1),5) 
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This can only be used in approximate mode. Over ten million results the probability is 
about 0.159563. The given result is 23/144, or 0.159722. The two agree to the 
expected degree. 

27. With n boxes and n coins per box, and defining c0 as n, the probability of not being 
detected is given by the expression none(selection[c0]from[unit[c0]]). This can 
be run in exact mode for small values of n, but is computationally impractical for 
n = 100, where approximate mode is needed, where we can simplify to the expression 
none(select[c0](unit[c0])). For ten million results this probability is about 
0.365993. The given result is quoted only as 0.366,which this result agrees with, but 
the given solution could be calculated more precisely as 0.366032, and then the 
results agree to the expected degree. 

Other values of n could be evaluated, but would not significantly add to the value of 
using the program in this way. 

28. Similarly to the previous problem we define -c0 n, -c1 m, -c2 r, and use the 
expression count(select[c0](rstep[c0](c1)))==c2. For example with n = 10, 
m = 2, r = 3 the probability is 0.201327. The given solution formula is the real number 
[number_combin(c0,c2)]*pow(c1/c0,c2)*pow(1-c1/c0,c0-c2), which has the 
same value, so the two results agree. 

Other values of n, m and r could be evaluated, but would not significantly add to the 
value of using the program in this way. 

29. The reference to many plates suggests a Poisson distribution, and then, for c0 plates, 
the probability is the real value poisson_dist(c0,c0). For c0 = 3 this result is 
0.224042, which is as the given solution, to the precision reported there. 

Increasing c0, results include c0 = 10 result is 0.12511; c0 = 100 result is 0.039861; 
c0 = 1000 result is 0.0126146; c0 = 10000 result is 0.00398939. This appears to be 
declining as the square root of c0, so multiplying those results by sqrt(c0) gives 
c0 = 10 result is 0.395633; c0 = 100 result is 0.39861; c0 = 1000 result is 0.398909; 
c0 = 10000 result is 0.398939; c0 = 100000 result is 0.398942; c0 = 1000000 result is 
0.398942. The limiting value appears to be slightly under 0.4. Some investigation 
identifies that 0.398942 is 1/√2𝜋, so it appears that the limiting value for n plates 
might be 1/√2𝜋𝑛. This is the given solution. 

30. We can solve this by using poisson_dist multiple times. We use -c0 20; we would 
need to modify our expression if poisson_dist(c0,0) could equal zero, but it does 
not in this case. We can sum over even numbers to produce the probability x0 by 
until(x0:=x1;x2:=poisson_dist(c0,r0),r0+=2;x1:=x0+x2;real_eq(x0,x1)) 
and then we can output x0. This is reported as 0.5, and we might guess this the exact 
result is a half. However, the given solution shows that the exact solution is greater 
than this by ½e-40, but that is negligibly small, being about 2×10-18; real numbers 
cannot reliably record that difference when summing multiple terms, each with their 
own error. Note that in general, for mean m, the given result is ½(1+e-2m), which can 
alternatively be evaluated as exp(-c0)*cosh(c0). 

31. We here make the simplifying assumptions that all dates are equally likely and that 
we can ignore leap years. Then with n = c0 people, the probability that there is at 
least one repeated birthday is !different(pattern_list[c0]rand365). This needs 
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large integers: 128 bits is insufficient, but 256 bits is sufficient. Note that using 
sorted[c0]dz365 rather than pattern_list[c0]rand365 is not computationally 
feasible. Here we just report the two values of n that indicate when this reaches a 
probability of 0.5: n = 22 probability is 0.475695; n = 23 probability is 0.507297. Thus 
the solution is that 23 people are needed. This agrees with the given solution. That 
solution considers the more general case, but here we have just considered the case 
asked – although we could change 365 to c1 and be able to handle any specific case. 

32. Unfortunately, even 1024 bit integers are insufficient to solve this problem exactly – 
using selection_list the number of evaluations is small, but the number of results 
is too large. We thus must use approximate mode (if using the program; this is very 
much a case where a solution not using the program is much simpler) and the 
expression any(select[c0](unit365)). 

Using approximate mode it is hard to pin down the exact transition from a probability 
below 0.5 to one above it, due to the uncertainty in the results that we produce. Here 
we use a 99.99% confidence interval, rather than the default 95%, by using 
-confidence 99.99, and use a hundred million results for the cases quoted here. 
We then have for 252 people a confidence interval of [0.498882, 0.499271] and for 
253 people a confidence interval of [0.500297, 0.500686]. We thus have reasonable 
confidence that the answer is 253 people. This matches the given solution. 

33. This problem is not suitable for the use of Monaco. 

34. As problem 32, this needs approximate mode, but to be practical final runs are only 
ten million results. At this point even 95% confidence intervals overlap, and so the 
answer produced here is not definite. With c0 as the number of workers, the number 
of days productivity is c0*(365-count_diff([c0]dz365)). With 363 workers the 
mean total productivity is 48942.5 days; with 364 workers the mean total productivity 
is 48943.2 days; with 365 workers the mean total productivity is 48943.3 days; with 
366 workers it is 48942.3 days, and thus we estimate the optimum factory size as 364 
or 365 workers, which are too close to separate – and even the other figure quoted, 
or ones beyond them, are possible based on those results. The given solution is 364 
workers, and we are consistent with that result. 

35. Using the program an exact answer is not possible because in a finite number of steps 
one cannot be sure if the man will later fall off the cliff. Nevertheless, we will set a 
maximum number c0 of steps. The values of c0 that we will try do not allow exact 
mode, so we will use ten million results in approximate mode. The expression 
xwhile[c0](r0>=0,r0+=(dz3?1:-1),1) has result 1 if the man has not fallen off 
the cliff, -1 if he has. For c0 equal to 1000 he has fallen off the cliff with a probability 
of about 0.499874, or has not done so with a probability of 0.500126. We can make 
a guess that the man has a probability of one half of falling off the cliff, and this is the 
given solution. 
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36. This problem can be solved as an absorbing Markov chain. We let the states be player 
M’s funds: 1, 2, 0, 3, so we start in the first state and want the probability of finishing 
in the last state. The transition matrix is: 

1
30

0 2 1 0
1 0 0 2
0 0 3 0
0 0 0 3

2 

Otherwise we proceed as problem 9. The solution is that M wins with probability 4/7, 
which is the given solution. 

37. Although not specifically mentioned in the problem, this problem assumes roulette 
as problem 7, with a probability of winning each spin of 18/38, or 9/19. If the gambler 
makes a single spin, his probability of reaching $40 is 9/19. The problem is thus if he 
plays single bets until reaching $0 or $40, what is his probability of the latter? 

This is again a Markov chain, as problem 36, except that we will number the states 0 
to 40 and thus start in state 20, not in the first state, but we still consider the case of 
finishing in the last state. Setting up the required transition matrix by hand would be 
tedious, so we need to get the program to calculate the transition matrix. We start by 
setting up four constants: c0, the target result, i.e. 40; c1, the starting state, i.e. 20; 
c2, the relative probability of winning a spin, i.e. 9; c3 the relative probability of losing 
a spin, i.e. 10. It is convenient to also define -c4 c0+1 and -c5 c23, the number of 
states and the probability normalising factor, respectively. 

The transition matrix u0 can then be created as the result of the expression: 

ccreate_mat[c4][c4] 
(l0==0?l1==0??c5:l0==c0?l1==c0??c5:l1==l0+1?c2:l1==l0-1??c3) 

As the previous problem, we set v0 to mmat_absorb_states(u0). Then the modified 
r0 and r1 that the output is based on are given by r0:=last(dmat_row(c1,v0)) and 
r1:=get(c1,dmat_rsum(v0)). 

To evaluate this needs large integers; 1024 bits is more than enough so we use that 
here. The probability of winning is 0.108398. The given solution is only reported to 
the limited precision 0.11, but its calculation can be simplified to 1

"#2018$
20+1&'  and exactly 

agrees. The gambler should thus stake all his money at once. 

38. This problem is not suitable for the use of Monaco. 

39. This is simply the mean value of the minimum of three uniform random numbers 
min(xuniform,xuniform,xuniform). This can be made a real result using the 
function real_result, and the mean then reported by using -real_stats. This 
has to be approximate, and over ten million results is about 0.249973, which we guess 
to have an exact value 0.25, which the given solution confirms. 

40. This is find_ne(permute52from[copy4(unit13)],0)+1; the +1 is needed because 
the program counts from zero. This needs more than 128 bit integers, but 256 bits is 
sufficient. The result is 10.6, which is also the given solution. 

41. This problem is not suitable for the use of Monaco. 
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42. The first part of the problem is simply x0:=uniform and real result min(x0,1-x0), 
which -real_stats for ten million results reports a mean value of about 0.249975. 
We can guess that to have an exact value 0.25, which the given solution confirms. The 
second part of the problem most conveniently sets x1:=min(x0,1-x0) and then is 
the real result x1/(1-x1), which handled similarly is about 0.386248. The given 
solution is 2 loge 2 – 1, which is 0.386294, although only quoted as 0.386, and the 
results agree to the expected degree. 

43. We can create the breakpoints and arrange for them to be such that x0 < x1 by using 
x0:=xuniform;x1:=xuniform;xsort01. Next, we create the three lengths as x0, x1 
and x2 by x2:=1-x1;x1-=x0. We can then sort those lengths in ascending order by 
using xsort012. We then need three separate runs, all in approximate mode, to 
estimate the mean values x0, x1 and x2, each as a real result. For ten million results 
each these are about 0.111132, 0.277803 and 0.611065. We can guess that these 
have exact values 0.111111..., 0.277777... and 0.611111..., which are 1/9, 5/18 and 
11/18. We can make these guesses easier by adding +fraction 50 in each case. 
This guesswork matches the given solution. 

44. If we let the probability of winning be c0 divided by c1, and choose c2 plays, then we 
win if sum(selection_list[c2]from[rstep[c1](c0)])>c2/2 is true. The mean 
value of that, for a winning probability of 0.45, i.e. -c0 9 -c1 20, is, for values of 
n = c2, the number of plays: n = 2 probability is 0.2025, n = 4 probability is 0.241481, 
n = 6 probability is 0.255264, n = 8 probability is 0.260381, n = 10 probability is 
0.261563, n = 12 probability is 0.260685. We appear to have peaked, and found that 
the best number of plays is 10. This agrees with the given solution in this case, but we 
have, as usual, not found a general solution as also requested. 

45. For (a) we can reduce the work by noting that there is no need to shuffle both decks, 
and the result is the mean value of count(shuffle(sequence52)==sequence52). 
This needs approximate mode as the problem is much too large for exact mode. Over 
ten million results we get a mean of about 0.999856, which we can guess to have the 
exact value 1, which is the given solution. (b) is the same problem for general n, (a) 
having n = 52, but using the program we can only produce results for specific values 
of n. 

46. We can get the probability of each number of matches in the previous problem by 
using -histogram rather than -statistics. We assume the same case (a) and 
for ten million results we see only 0 to 10 matches, more than 10 matches requiring 
longer runs. For example, the probabilities of 0 to 2 matches are about 0.367954, 
0.367825 and 0.183959. The given solution does not provide these numbers, but does 
note that the first value tends to e-1 or 0.367879 as n becomes large, and this suggests 
that n = 52 can be considered to be fairly large. 

47. We do have to use some analysis outside the program to consider this problem. 
Clearly we only ever stop if the current dowry is the largest seen so far, or fail if there 
are no more. We also must be increasingly likely to stop the longer we continue for. 
But no choices other than stop or continue make sense – if there were a probability 
of trying this dowry or continuing, one must be better than the other (except in rare 
cases where they are the same, but then there is no harm in assuming either is 
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better). So our strategy must be pick a number, here n = c1, and examining n dowries, 
pick the next one that is larger than any seen so far. 

With 100 dowries, this is too large to implement exactly – and would be even for 
expressions that minimise randomness, rather than the simpler one used here. But 
as we are using approximate mode, simple is clearer and easier to use. We can 
conveniently let the dowries be the numbers 1 to c0, where c0 is the number of 
dowries, i.e. 100. We thus use a list of the dowries v0:=shuffle(xsequence[c0]). 
We then set our target r0 as the largest value in the first c1 elements of v0, i.e. 
r0:=max(head[c1](v0)). We succeed if the first element in the remaining elements 
of v0 is equal to c0, i.e. setting v1:=tail[c0-c1](v0) and r1:=find_gt(v1,r0), we 
succeed if e1==c0. 

Finding the optimum value with only approximate results cannot guarantee to find 
the optimum solution. Allowing a hundred million results: for n = 35 the probability is 
about 0.370731; for n = 36 the probability is about 0.371041; for n = 37 the 
probability is about 0.37108; for n = 38 the probability is about 0.370837. The best 
guess is n = 37, but the 95% confidence interval – and we would like a higher level of 
confidence than that – for n = 36 is [0.370946, 0.371135], and for n = 37 it is 
[0.370986, 0.371175], which are almost the same and greatly overlap, so we cannot 
even be sure if it is n = 36 or n = 37, and could even be neither. 

Noting that the given solution uses a parameter s such that n = s-1, the given solution 
is that the optimum value for 100 dowries is s = 38, so the optimum value of n is 37. 
So we actually exactly agree with the given solution, but this is fortunate, we could 
easily have only been close to it, and consider our success accordingly. 

48. This problem is not suitable for the use of Monaco, but unlike previous such cases this 
is not because it is fundamentally unsuited, but because pursuing an approach similar 
to problem 47 we have two parameters to handle – the value of the largest dowry 
seen so far (which should either be, or be converted to, a uniform random value 
between 0 and 1) and investigating different numbers of dowries seen so far. This is 
too large a programme of runs to be realistic to pursue, particularly approximately. 

49. This problem is not suitable for the use of Monaco. The solution could be illustrated 
for some possible figures, but there is little value in doing so. 

50. The problem here does not specify how b and c are to be determined. So we break 
with our usual practice and consult the given solution, which is that – not using the 
notation there – we let b and c be uniformly distributed on the interval from -x to +x, 
determine the probability, and then let x tend to infinity. The case of having a real 
root is b2 ≥ c. We can use the program to test this for various values of x, but this must 
be approximately. We let x be the constant b0, and a suitable expression is 
x0:=2*b0*uniform-b0;x1:=2*b0*uniform-b0;real_ge(x0*x0,x1). We use ten 
million results for each run. 

For x = 1 the probability is about 0.666637; for x = 10 the probability is about 
0.894495; for x = 100 the probability is about 0.966662; for x = 1000 the probability 
is about 0.989467; for x = 10000 the probability is about 0.996673; for x = 100000 the 
probability is about 0.998949; for x = 1000000 the probability is about 0.999667. 
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Clearly the probability is tending to one, and thus, in the sense defined here, most 
quadratic equations of the form given have real roots. This is the given solution. 

51. Using the program, we can only address this problem incompletely by answering what 
the probability is for a large number of steps. If we let that number of steps be c0, we 
can use the expression: 

xuntil[c0](dz2?dz2?incr0:decr0:dz2?incr1:decr1;r2:=r0==0&r1==0,r2,0) 

However, using a million results per run, if we set c0 to 1000 then the proportion of 
runs that we have returned to the origin is about 0.67814, while if we set c0 to 10000 
then the probability that we have returned to the origin is about 0.738996. Knowing 
the answer to the problem, that the probability is 1 and that we are a long way off 
that value, this is clearly not going to be a practical proposition to demonstrate the 
solution, and so we consider that this problem is not suitable for the use of Monaco. 

52. As problem 51 – although knowing that the solution is less than 1, even more so – this 
problem is not suitable for the use of Monaco. 

53. We can only illustrate this for selected values of a, which we let be b0, and ℓ, which 
we let be b1, and only in approximate mode. 

We can assume that the needle’s centre is a distance x0 from the nearest line, so x0 
is uniformly distributed between 0 and a. We can assume that the needle has a 
random rotation x1, where a rotation of zero is normal to the lines, that is uniformly 
distributed between -pi/2 and pi/2, other rotations being equivalent to these. The 
needle then crosses the line if x0 < b1*cos(x1). Thus we use the expression: 

x0:=b0*uniform;x1:=pi*uniform-pi/2;real_lt(x0,b1*cos(x1)) 

There is no reason not to use -b0 1 and then only vary b1. The only case we will 
consider here is -b1 0.5, where using ten million results the probability is about 
0.31826. The given solution says this is 2ℓ/𝛑a  = 1/𝛑, which is 0.318310, so the results 
agree to the expected degree. 

54. Compared to the previous problem, we adopt the changed notation of just using b0 
for ℓ. We let the centre of the needle be at coordinates (x0, x1) with rotation x2. To 
make the following problem easier, we let x0 and x1 each be uniformly distributed 
from 0 to 1, but we let the rotation x2 only vary between 0 and pi/2 – other rotations 
having the same result by symmetry. 

The needle then crosses a vertical line (using the usual graph meaning of the term, 
not actually vertical) if either of the following is true: x0-b0*cos(x2) < 0 or 
x0+b0*cos(x2) > 1 and crosses a horizontal line if either of the following is true:  
x1-b0*sin(x2) < 0 or x2+b0*sin(x2) > 1. We could rearrange these to simplify the 
expression, but again with the following problem to consider we do not do so. The 
resulting expression is given in the final section below. 

Again, we only consider the case -b0 0.5. For ten million results the mean number 
of crossings is about 1.27301. The given solution says this is 8ℓ/𝛑 = 4/𝛑, which is 
1.27324, so the results agree to the expected degree. 

55. Starting from the solution to the previous problem, the number of crossings here is 
sum of two uses of the function f0 that takes the coordinates of the two ends in the 
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same axis direction and counts the lines crossed; so for example the first use of f0 is 
as f0(x0-b0*cos(x2),x0+b0*cos(x2)). We can define f0 taking into account the 
limited rotation used, and thus the constraints on the arguments n0 and n1 of n0 < 1 
and n1 > 0, so that f0 is floor(n1)-floor(n0). 

We illustrate this here with -b0 3, which over ten million results has a mean value of 
about 7.63948. The given solution says this is 8ℓ/𝛑 = 24/𝛑, which is 7.63944, so the 
results agree to the expected degree. 

56. This problem has too many variables – five: four numbers of balls and a number to be 
drawn – to be suitable for the use of Monaco. On consulting the given solution – and 
armed with the knowledge that since this book was published Fermat’s Last Theorem 
has been proved for all cases, not just all computationally feasible cases – the problem 
is impossible, and so this problem is unsuitable for solution by any means, other than 
a solution that says it is impossible, as the given solution does. 
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Characterisation of Solutions 

The problems, and their solutions in this document, can be characterised into the following 
categories. Exact solutions are assumed unless indicated otherwise. Any additional material 
provided, including any additional problems, in the given solutions is not considered in 
selecting a category here. 

• Completely solved, or solved as well as the given solution to the given problem 1, 4, 
6-9, 14-21, 31, 36-37, 40 (18 problems). 

• Specific result produced, but general case not solved: 29, 44-46 (4 problems). 

• Solution illustrated, but general case not solved: 2-3, 22-23, 53-55 (7 problems). 

• Close approximate or otherwise limited precision result produced: 5, 25-26, 30, 32, 
34-35, 39, 42-43, 47 (11 problems). 

• Close approximate result produced, but general case not solved, or not fully solved: 
27-28, 50 (3 problems). 

• Not suitable for the use of Monaco: 10-13, 24, 33, 38, 41, 48-49, 51-52, 56 
(13 problems). In the last of these cases, the problem is impossible. 

The program is useful in most cases (43 out of 56), but only a complete solution in about a 
third of the problems. 
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Summary of Runs 

This is output from the option +parameters, but omitting the initial Parameters: line. 

1. -exact -c01 100 
v0:=sequence[c01];r01:=die(c01);rloop2(r01-1,rloop3(r01-r2-1,r3+=r2+ 
1;r3<r0&incr9));r8:=r01*(r01-1)/2;2*r9==r8&(write(r0);space(2);write 
(r1);space(2);write(r01)) 

2. -exact -probability -statistics -c0123 {1,3,2,3} 
f0[p0>random(p1)];f0(c2,c3)&(f0(c0,c1)|f0(c0,c1)) 

And similarly for other values of c0123.  

3. -exact -probability -statistics -c01 {2,3} 
f0[p0>random(p1)];2@f0(c0,c1)+f0(1,2)>=2 

And similarly for other values of c01. 

4. -statistics until(incr0,d6==6) 10000000 
-u0 {{5,1},{0,6}} -eval 
v0:=mmat_absorb_visits(u0);write_ratio(ends(v0)) 

5. -probability -statistics -fraction 100 -b0 0.75 
f0[real_gt(n0-b0/2,0)&real_lt(n0+b0/2,1)];x0:=xuniform;x1:=xuniform; 
f0(x0)&f0(x1) 10000000 

6. -exact -statistics get(count_eq(3d6,6),{-1,1,2,3}) 

7. -exact +noexact -statistics -c0 36 -c1 38 -c2 35 
r0:=sum(selection_list[c0]from[unit[c1]]);r1:=r0*(c2+1)-c0 

-exact +noexact -statistics -c0 36 -c1 38 -c2 35 -c3 20 
r0:=sum(selection_list[c0]from[unit[c1]]);r1:=r0*(c2+1)-c0+(r0?c3:- 
c3) 

8. -exact -probability -statistics 
same(combine13from[copy13(sequence4)]) 

9. -u0 
{{0,3,4,5,5,4,3,4,8},{0,27,0,0,0,0,0,6,3},{0,0,26,0,0,0,0,6,4},{0,0, 
0,25,0,0,0,6,5},{0,0,0,0,25,0,0,6,5},{0,0,0,0,0,26,0,6,4},{0,0,0,0,0 
,0,25,6,3},{0,0,0,0,0,0,0,36,0},{0,0,0,0,0,0,0,0,36}} -eval 
v0:=mmat_absorb_states(u0);r0:=last(dmat_row(,v0));r1:=first( 
dmat_rsum(v0));write_ratio(r01);space(2);rwrite_ratio(r01) 

14. -statistics -s0 5 until(r0:=dz[s0];e0:=1;incr1,all(v0)) 10000000 
-u0 
{{0,1,0,0,0,0},{0,1,4,0,0,0},{0,0,2,3,0,0},{0,0,0,3,2,0},{0,0,0,0,4, 
1},{0,0,0,0,0,5}} -u1 mmat_absorb_visits(u0) -c0 
first(dmat_rsum(u1)) -c1 last(u1) -eval 
write_ratio(c01);space(2);rwrite_ratio(c01) 

15. -exact -statistics -c0 8 -c1 7 
v0:=permute[c01]from[step[c01](c0)];count(frest(v0)^lrest(v0)) 

16. -exact -probability -statistics -c0 3 -u0 head[pow(2,c0)]{1,2} 
v0:=permute[k0]from[u0];r0:=s0;do[c0-1](r0/=2;rloop1(r0,r2:=2*r1;r3: 
=r2+1;e01:=max{e02,e03}));r23:={0,1};e02&e03 
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17. -exact -probability -statistics -c0 3 -u0 head[pow(2,c0)]{1,2} -pool 
k0-1 2 
v0:=permute[k0]from[u0];r0:=s0;do[c0](r0/=2;rloop1(r0,r2:=2*r1;r3:= 
r2+1;r9|=(e02&e03);e01:=pool_dz(2)?e02:e03));r9 

18. -exact -probability -statistics sum(sorted100dz2)==50 

19. -exact -probability -statistics -c0 1 
count(selection_list[c0*6]from{0,0,0,0,0,1})>=c0 

And similarly for other values of c0. 

20. -u0 {{0,5,5,0},{7,0,0,3},{0,0,10,0},{0,0,0,10}} -eval 
v0:=mmat_absorb_states(u0);r0:=last(dmat_row(,v0));r1:=first( 
dmat_rsum(v0));write_ratio(r01);space(2);rwrite_ratio(r01) 

21. -exact -s9 8 -output 
%[results_loop9(e9:=results(r9));r01234567:=v9;rwrite_ratio{(r0?>r1) 
+(r2?>r3),r0123};nline;rwrite_ratio{(r4?>r5)+(r6?>r7),r4567};nline; 
lwrite(r1357>r0246);nline] -c0123 {2,1,101,100} -pool 1 c01*c23 
-pool 1 c01*c23 -s0 4 
f0[pool_dist([r9]?r23:r01)];r0123:=c0123;r9:=dz2;r4:=f0;r5:=f0;4*r4+ 
2*r5+r9 

-exact -s9 8 -output 
%[results_loop9(e9:=results(r9));r01234567:=v9;rwrite_ratio{(r0?>r1) 
+(r2?>r3),r0123};nline;rwrite_ratio{(r4?>r5)+(r6?>r7),r4567};nline; 
lwrite(r1357>r0246);nline] -c0123 {2,1,101,100} -pool 1 c01*c23 
-pool 1 (c01-1)*(c23-1) -s0 4 
f0[pool_dist([r9]?r23:r01)];f1[r9?r4?decr3:decr2:r4?decr1:decr0]; 
r0123:=c0123;r9:=dz2;r4:=f0;f1;r5:=f0;4*r4+2*r5+r9 

22. -exact -probability -statistics -c0 15 -c1 10 -u0 step[c01](c0)?1:-1 
any_eq(sigma(permute[k0]from[u0]),0) 

And similarly for other values of c0 and c1. 

23. -exact -probability -statistics -c0 2 xuntil[c0](r0+=ds2,r0==0,1) 

And similarly for other values of c0. 

25. -probability -statistics 
x0:=2*pi*xuniform;real_gt(sqrt(sum_sq(1-cos(x0),sin(x0))),1) 
10000000 

26. -probability -statistics 
x0:=60*xuniform;x1:=60*xuniform;real_lt(abs(x0-x1),5) 10000000 

27. -exact -numbers -noeval +noexact -c0 100 
none(selection[c0]from[unit[c0]]) 

-probability -statistics -c0 100 none(select[c0](unit[c0])) 10000000 

28. -exact -probability -statistics -c0 10 -c1 2 -c2 3 
count(select[c0](rstep[c0](c1)))==c2 

-c0 10 -c1 2 -c2 3 -eval 
rwrite([number_combin(c0,c2)]*pow(c1/c0,c2)*pow(1-c1/c0,c0-c2)) 

29. -c0 3 -eval rwrite(poisson_dist(c0,c0)) 
-c0 10 -eval rwrite(sqrt(c0)*poisson_dist(c0,c0)) 

And both similarly for other values of c0. 
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30. -c0 20 -eval 
until(x0:=x1;x2:=poisson_dist(c0,r0),r0+=2;x1:=x0+x2;real_eq(x0,x1)) 
;rwrite(x0) 

31. -exact -probability -statistics -c0 22 
!different(pattern_list[c0]rand365) 

And similarly for other values of c0. 

32. -probability -statistics -confidence 99.99 -c0 252 
any(select[c0](unit365)) 100000000 

And similarly for other values of c0. 

34. -statistics -c0 363 c0*(365-count_diff([c0]dz365)) 10000000 

And similarly for other values of c0. 

35. -histogram -c0 1000 xwhile[c0](r0>=0,r0+=(dz3?1:-1),1) 10000000 

36. -u0 {{0,2,1,0},{1,0,0,2},{0,0,3,0},{0,0,0,3}} -eval 
v0:=mmat_absorb_states(u0);r0:=last(dmat_row(,v0));r1:=first( 
dmat_rsum(v0));write_ratio(r01);space(2);rwrite_ratio(r01) 

37. -c0 40 -c1 20 -c2 9 -c3 10 -c4 c0+1 -c5 c23 -u0 
ccreate_mat[c4][c4](l0==0?l1==0??c5:l0==c0?l1==c0??c5:l1==l0+1?c2: 
l1==l0-1??c3) -eval 
v0:=mmat_absorb_states(u0);r0:=last(dmat_row(c1,v0));r1:=get(c1, 
dmat_rsum(v0));write_ratio(r01);space(2);rwrite_ratio(r01) 

39. -real_stats real_result(min(xuniform,xuniform,xuniform)) 10000000 

40. -exact +noexact -statistics 
find_ne(permute52from[copy4(unit13)],0)+1 

42. -real_stats x0:=uniform;real_result(min(x0,1-x0)) 10000000 
-real_stats x0:=uniform;x1:=min(x0,1-x0);real_result(x1/(1-x1)) 
10000000 

43. -real_stats +fraction 50 
x0:=xuniform;x1:=xuniform;xsort01;x2:=1-x1;x1-=x0;xsort012; 
real_result(x0) 10000000 

-real_stats +fraction 50 
x0:=xuniform;x1:=xuniform;xsort01;x2:=1-x1;x1-=x0;xsort012; 
real_result(x0) 10000000 

-real_stats +fraction 50 
x0:=xuniform;x1:=xuniform;xsort01;x2:=1-x1;x1-=x0;xsort012; 
real_result(x0) 10000000 

44. -exact -probability -statistics -c0 9 -c1 20 -c2 2 
sum(selection_list[c2]from[rstep[c1](c0)])>c2/2 

And similarly for other values of c0, c1 and c2. 

45. -statistics count(shuffle(sequence52)==sequence52) 10000000 

46. -histogram count(shuffle(sequence52)==sequence52) 10000000 
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47. -probability -statistics -c0 100 -c1 35 
v0:=shuffle(xsequence[c0]);r0:=max(head[c1](v0));v1:=tail[c0-c1](v0 
);r1:=find_gt(v1,r0);e1==c0 100000000 

And similarly for other values of c1. 

50. -probability -statistics -b0 1 
x0:=2*b0*uniform-b0;x1:=2*b0*uniform-b0;real_ge(x0*x0,x1) 10000000 

And similarly for other values of b0. 

51. -probability -statistics -c0 10000 
xuntil[c0](dz2?dz2?incr0:decr0:dz2?incr1:decr1;r2:=r0==0&r1==0,r2,0) 
1000000 

And similarly for other values of c0. 

53. -probability -statistics -b0 1 -b1 0.5 
x0:=b0*uniform;x1:=pi*uniform-pi/2;real_lt(x0,b1*cos(x1)) 10000000 

54. -statistics -b0 0.5 
x0:=uniform;x1:=uniform;x2:=pi/2*xuniform;(real_lt(x0-b0*cos(x2),0)| 
real_gt(x0+b0*cos(x2),1))+(real_lt(x1-b0*sin(x2),0)|real_gt(x1+b0* 
sin(x2),1)) 10000000 

55. -statistics -b0 3 
f0[floor(n1)-floor(n0)];x0:=uniform;x1:=uniform;x2:=pi/2*xuniform;f0 
(x0-b0*cos(x2),x0+b0*cos(x2))+f0(x1-b0*sin(x2),x1+b0*sin(x2)) 
10000000 


